Robust control strategies for musculoskeletal models
using deep reinforcement learning

tukasz Kidzinski & Carmichael Ong

Stanford

University

August 7, 2018

lukasz.kidzinski@stanford.edu ©kidzik August 7, 2018 1/33



Ref: Gillette Children’s Specialty Healthcare
lukasz.kidzinski@stanford.edu ©kidzik August 7, 2018




Ref: OpenSim (https://www.youtube.com/watch?v=HLFQMle-vJw), Kat Steele
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How to combine modern control frameworks with knowledge and
expertise embeded in musculoskeletal models?
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Reinforcement learning (RL) Problems and examples

What can we do with Reinforcement Learning?

1. Model adaptation of kinematics
2. Generate data for statistical models
3. Study:

e motor control
e muscle synergies

4. Synthesize physiologically accurate motion
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RO ACETGIEN(NBI  Problems and examples

OjaiSii Stanford

University

OpenSim is a freely available software that allows you to build, exchange,

and analyze musuloskeletal models and dynamic simulations of movement.
(http://opensim.stanford.edu/)

Controllers <
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Reinforcement learning (RL) Problems and examples

Ref: NNAISENSE
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Reinforcement learning (RL) Framework

- : Stanford
Reinforcement learning framework it

Reinforcement learning models a policy (a decision process) of an agent
interacting with an environment by taking actions optimizing rewards.

£l

Environment

Rewan
Interpreter
%’ &

Action

Agent

Ref: Wikipedia
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Reinforcement learning (RL) [MEEIHEEIR

Ref: Very good friends and their child
lukasz.kidzinski@stanford.edu ©kidzik August 7, 2018




Reinforcement learning (RL) Basic terminology

Stanford

University

Agent

@ Tries to achieve the objective (long-term)
@ Tries to maximize the reward (short-term)

@ Interacts with the environment
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Reinforcement learning (RL) Basic terminology
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University

Reward /Penalty

Clapping Falling
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Reinforcement learning (RL) Basic terminology

Stanford

Observation and action University

Observation:
@ State of the world
@ Sensory input

@ State of muscles, joints and
bones

@ etc.

Action:

@ Muscle excitations

Policy:

@ Links observations with actions
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Basic terminology
Stanford

Mathematical definition of a policy Tituaery)

Policy maps states to actions

Let S be a space of states, A be a space of actions.
Policy is a function Py : S — A.

Any statistical model can be a policy

Normally, a policy is parametrized with some parameters 6 € RP.

We want to find the policy maximizing rewards

Let R: S — R be the reward function. We optimize

T
argmax Y R(stg),

where {s; g}1<¢<7 is a trajectory dependent on the policy.

v
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Basic terminology

Reinforcement learning (RL)

Stanford
University
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Stacked linear regressions with nonlinear transformations in outputs.
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Reinforcement learning (RL) Training

Training a policy Stanford

University

We want to find the policy maximizng rewards.

Generic optimization approach:

e Start with an empty (random) policy
@ Repeat until convergence

o Use the policy with noise to explore environment
o Improve the policy given the experience

lukasz.kidzinski@stanford.edu ©kidzik August 7, 2018 17 /33



Reinforcement learning (RL) Training

Stanford
Toy pro blem University

)

Pendulum Swing-up

e Environment: Pendulum (one joint, one degree of freedom)
@ Obejective: Swing it up

o Observation: Angular position & velocity (a vector in R?)
o Action: Apply torque

@ Reward: Negative distance from 0 velocity, 0 angle
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Reinforcement learning (RL) [EEEEILILI:

Stanford

University

Exploration of the environment

Ref: Matthew Sheen, Reinforcement Learning - Pendulum Swing-up

https://www.youtube.com/watch?v=YLAWnYAsai8
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https://www.youtube.com/watch?v=YLAWnYAsai8

Training
Stanford

Solve with policy gradient (DDPG) I ——

Let @ : S x A— R be an approximation of a state-action value.
Let Py : S — A be the best policy so far.

Now iteratively:
o Update approximation of Q from history of trials
e Optimize J(8) = Q(s, Py(s))
o Compute the gradient of J
o Update 6
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Application of RL in biomechanics
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@ Learning to Run challenge
@ Tips & tricks
@ Al for prosthetics
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Learning to Run challenge
_ : Stanford
NIPS 2017: Learning to Run challenge it

Task:
@ Environment: A model with 18 muscles and 9 DOF

@ Objective: Go as far as possible in 10 seconds
@ Observation: State of the model
@ Action: Muscle excitations

o Reward: Speed

Some details:
@ Obstacles in the ground
@ 2D model (the model doesn't fall sideways)

@ Don't use experimental data
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Application of RL in biomechanics Learning to Run challenge

Ref: NNAISENSE
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Application of RL in biomechanics Learning to Run challenge

Experimental vs synthesized data Ui
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Tips & tricks
Stanford

Speeding up exploration University

o Frameskip: instead of sending signals every 1/100 of a second, keep
the same control for, for example, 5 frames.

@ Binary actions: excitations 0 or 1 instead of values in the interval
[0,1].

@ Reward shaping: modifying the reward for training in such a way that
it still makes the model train faster for the actual initial reward.

Ref: Kidzinski, tukasz, et al. " Learning to Run challenge solutions: Adapting reinforcement
learning methods for neuromusculoskeletal environments.” arXiv preprint arXiv:1804.00361
(2018).
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Application of RL in biomechanics [EERSERIRIIES
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Gl s
NIPS 2018: Al for prosthetics

Rules:
@ 19 muscles and 14 DOF
@ Match requested velocity vector
@ 3D model

@ Experimental data is allowed

Rewards:
@ Solving a real medical problem!
@ Travel grants to Stanford & EPFL
e $250 Google Cloud Credits for start
e 4 NVIDIA GPUS to win (~$3,000 each)
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Reinforcement learning in osim-rl Installation

Contents Stanford
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@ Reinforcement learning in osim-rl
@ Installation
@ Live demo
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Installation
Stanford

Linking OpenSim with RL (osim-rl) I ——

vis  amHus

osim-rl EE0 vocs  news wme team

Reinforcement
learning with
musculoskeletal
models in OpenSim

OpenSim RL

Use our musculoskeletal reinforcement

NIPS 2018: Al for prosthetics

Design artificial intelligence to control human body and

predict performance of a prosthetic leg. Participate in the NIPS  leaming environment for other

2018 challenge to win prizes and fame. projects in computer science,
neuroscience, biomechanics, etc.

challenge —

Leam more
eamn more about osim-rl -

Sanford Berkeley MU 2 2
e TR O L

osim-rl is an interface for building robust controllers for your
OpenSim models using open deep reinforcement learning algorithms.

http://osim-rl.stanford.edu/
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Reinforcement learning in osim-rl Installation

# Assume that the brain wvariable s a policy function
env = ProstheticsEnv(visualize=True)

observation = env.reset()

for i in range(200):

V V. V Vv V

observation = env.step(brain.action(observation))

Controllers <

Neural Muscles and Muscle and Joint
Command ~ Tendons ™ Bone Geometry Accelerations ™ U —>|Movement
Contact
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Reinforcement learning in osim-rl Live demo

Stanford

Arm model University

https://github.com/stanfordnmbl/osim-rl/blob/master/
examples/legacy/train.arm.ipynb
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Live demo
Stanford

Summa ry University

@ Reinforcement learning (RL) allows you to build a robust controller by
specifying a high-level objective

@ osim-rl package allows you to use RL frameworks to control your
OpenSim models
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